Lead and Copper Rule Optimized Corrosion Control

Brian D'Amico U.S. EPA Office of Ground Water and Drinking Water

Purpose

 Provide background on the existing LCR requirements, including optimized corrosion control provisions.

Background

- The Lead and Copper Rule (LCR) is a treatment technique rule
 - The regulation requires systems to take certain actions to minimize lead and copper in drinking water as opposed to meeting an MCL.
- It requires public water systems (PWSs) to monitor for lead and copper.
 - While there are no MCLs associated with the LCR rule it does establish Action Levels (0.015 mg/L for lead or 1.3 mg/L for copper).
 - If the Action Level is exceeded it triggers additional actions to reduce water corrosivity, provide public education and remove lead service lines, if necessary.

Existing Monitoring Requirements

- Both community water systems (CWSs) and non-transient noncommunity water systems (NTNCWSs) are subject to monitoring requirements for Lead and Copper
- Systems must collect first-draw samples at taps in homes/buildings that are at high risk of lead and copper contamination
- The number of required samples varies by the size of the population served by the system
 - Systems serving > 100K people are required to take 100 samples
 - Systems serving ≤100 people are required to take 5 samples

Existing Monitoring Requirements (cont'd)

- PWSs must conduct tap monitoring every 6 months unless they qualify for reduced monitoring
- The number of required samples and sampling frequency may be reduced if systems meet certain requirements
 - Monitoring may be as infrequent as once every nine years.
- In the event a PWS exceeds designated action levels a PWS may be required to take corrective actions to minimize the levels of lead and copper in drinking water.
 - Some of these corrective actions may be required regardless of lead/copper levels for PWSs serving more than 50K people.

Corrective Actions

- When a PWS exceeds an Action Level they must conduct the following corrective actions:
 Conduct public education
 Implement source water monitoring and if needed treatment
 Install or optimize corrosion control treatment (serving < 50K people)
 Implement Lead Service Line Replacement (LSLR)
- Lead service line replacement is only required only when corrosion controls do not reduce lead and copper levels below the Action Levels.
- Some of the listed corrective actions are required of large PWSs (those exceeding 50K people served) regardless of levels of lead or copper.

Corrosion Control

- What is corrosion?
 - The International Union of Pure and Applied Chemistry (IUPAC) defines corrosion as:
 - An irreversible interfacial reaction of a material (metal, ceramic, polymer) with its environment which results in consumption of the material or in dissolution into the material of a component of the environment.
- Why do PWSs want to control corrosion
 - Corrosion can cause dissolution of lead or copper in pipes into drinking water.
- Corrosion control approaches in the lead and copper rule.
 - pH/Alkalinity adjustment
 - Corrosion inhibitor addition (e.g. orthophosphate, silica)
 - Calcium carbonate precipitation

Corrosion Controlling Treatment Methods

- Increasing the pH of water may decrease the solubility of lead and copper in water.
 - Sodium Carbonate (NA₂CO₃), Lime (Ca(HO)₂), and Sodium Hydroxide (NaOH) are three common agents used to increase the pH of drinking water.
 - Higher pH in drinking water can cause disinfection byproducts (such as Chloroform) when chlorine based disinfectants are used to treat drinking water.
- Injecting orthophosphates into the drinking water creates a coating of the corrosive sites on pipes.
 - The coating hinders the ability of lead or copper to dissolve into the drinking water.
 - There is an optimal pH range (7.2-7.8) to ensure proper orthophosphate coverage throughout the distribution system.
 - Orthophosphate use may result in increased nutrients discharged to receiving waters.

Corrosion Controlling Treatment Methods (cont'd)

- Precipitating calcium carbonate in water distribution system.
 - Precipitation may be achieved through the addition of lime which will add calcium ions and increase pH.
- The calcium carbonate forms a protective scale on the distribution system piping preventing corrosion.
 - This is not a preferred method of corrosion control for PWSs
 - It is difficult to precipitate an even scale throughout the distribution system.
 - Precipitation may be heavy close to the treatment plant and there may be little to no scale precipitated at the ends of the distribution system.

Existing Corrosion Control Requirements

- Most large PWSs (serving > 100K people) and medium and small systems that exceed either the lead or copper Action Level are required to optimize their corrosion control treatment (CCT).
- All large PWSs and some small and medium PWSs are required to conduct a study of their system to determine the best CCT to install.
 - This study must be completed in 18 months.
 - Once the best CCT has been approved by the state, the PWS has 24 months to install the technology.

Corrosion Control Requirements (Cont'd)

- Systems installing CCT, must conduct follow-up monitoring for 2 consecutive 6-month periods. This monitoring includes both tap and entry point monitoring for
 - Lead and copper
 - State designated water quality parameters which may include: pH, Alkalinity, calcium, conductivity, orthophosphate, silica, and temperature.
- After follow-up monitoring has been completed, the State reviews the data and sets Optimal Water Quality Parameter (OWQP) specifications that define optimal CCT.
 - Compliance with the LCR is determined by meeting the OWQP
 - Monitoring continues at the tap every six months and at the entry point to the distribution system every two weeks.
 - Consistently meeting the OWQPs can reduce the frequency at which tap monitoring is required.
 - Tap monitoring may be as infrequent as once every nine years.

Questions?